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ABSTRACT
Volumetric capnography is especially sensitive to disturbances affecting the efficiency of ventilation for gas exchange. Be-
cause lung homogeneity is a very fragile property, it is endangered in the majority of diseases that affect the airways, lung 
parenchyma, or alveolar microcirculation. 

Acute lung injury and acute respiratory distress syndrome can be conveniently monitored with volumetric capnography. 
The combination of two advanced technologies—airway flow monitoring and mainstream capnography—allows breath-by-
-breath bedside computerized determination of the physiological dead space, alveolar heterogeneity, and CO2 elimination. 

The use of volumetric capnography at the bedside can provide clinicians with important physiological and prognostic data, 
as well as allowing the effects of therapeutic interventions to be evaluated in critical ill patients receiving mechanical venti-
lation. 

Keywords: acute lung injury; pulmonary ventilation; respiratory dead space; capnography.

RESUMO
A capnografia volumétrica é especialmente sensível aos problemas que afetam a eficiência da ventilação para a troca gasosa. 
Uma vez que a homogeneidade do pulmão é uma propriedade muito frágil, a medida da capnografia é um desafio na maio-
ria das doenças que comprometem as vias aéreas, o parênquima pulmonar e a microcirculação alveolar. 

A lesão pulmonar aguda e síndrome do desconforto respiratório agudo são situações que devem ser monitoradas com a 
capnografia volumétrica. Essa tecnologia avançada é uma combinação da medida do fluxo aéreo e a capnografia conven-
cional, fazendo com que seja possível computar, à beira do leito, parâmetros como espaço morto, heterogeneidade alveolar 
e eliminação do CO2. 

O uso da capnografia volumétrica à beira do leito pode fornecer aos clínicos importantes informações fisiológicas e sobre o 
prognóstico, assim como seguir o efeito de intervenções terapêuticas nos doentes críticos ventilados mecanicamente.  

Descritores: lesão pulmonar aguda; ventilação pulmonar; espaço morto respiratório; capnografia.
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INTRODUCTION
Capnographic monitoring has become an im-

portant tool for ensuring patient safety. It allows early 
detection of pulmonary embolism and ventilator mal-
function (1). It also reflects alterations in respiratory 
mechanics and provides prognostic data during car-
diopulmonary resuscitation (2,3). In recent years, in-
creasing interest in defining prognostic factors has led 
to a re-evaluation of some common physiological and 
clinical parameters used in intensive care (4-6). 

Volumetric capnography provides a great amount 
of information on the functional status of the lung 
through the instantaneous recording of the  expired CO2 

fraction (FECO2) or CO2 production (VCO2[v]) versus ex-
pired volume (FECO2[v]), contain an important amount 
of information on the functional status of the lung. In the 
past, the use of volumetric capnography in clinical prac-
tice was limited because of various problems related to 
measurement and interpretation. Once the difficulty in-
herent to the phase lag between volume and CO2 signal 
had been overcome, the main technical problem related 
to mainstream capnometry became the fact that it is dif-
ficult to parameterize this curve without any visual ref-
erence points. Therefore, capnographic monitoring has 
often been reserved for the determination of end-tidal 
CO2 tension (PETCO2), in emergency trauma surgery, or in 
acute respiratory distress syndrome (ARDS) patients (7,8). 
However, when the arterial-alveolar gradient of CO2 is 
significantly altered, the PETCO2 can be misleading (9,10), 
which limits its use in clinical practice. In recent studies 
conducted by our group (11,12), we revisited the VCO2(v) 
and FECO2(v) curves in order to obtain data that are more 
easily digitized than are those typically obtained from the 
time-based FECO2 (FECO2[t]) curve. 

VOLUMETRIC CAPNOGRAPHY PARAMETERS
The shape of the expired capnograph depends 

on the homogeneity of gas distribution and alveolar 
ventilation (13). Lung heterogeneity creates regional 
differences in CO2 concentration, and gas from regions 
with high ventilation/perfusion first appears in the up-
per airways during exhalation. This sequential empty-
ing contributes to the positive slope of the alveolar 
plateau (13). Greater ventilation/perfusion heteroge-
neity leads to a steeper alveolar CO2 slope (14). 

Classically, three distinct phases have been iden-
tified in the FECO2 versus FECO2(v) curves: phase I, in 
which there is no CO2 elimination corresponding to the 
exhalation of the gas content of the physiological dead 
space; phase II, a transition phase during which FECO2 
increases progressively; and phase III, or the “alveolar 
phase”, a plateau during which FECO2 increases almost 
in parallel with expired volume. These phases cannot 
be identified without visual reference points defining 
the transitions between phases. Many computerized 
procedures have been unsuccessful because the tran-
sitions between phases are seamless. A new approach 

to volumetric capnography involves the use of the 
FECO2 versus VCO2(v) curve, rather than the FECO2 ver-
sus FECO2(v) curve or the FECO2 versus FECO2(t) curve. In 
recent years, our group defined physiologically based 
parameters that do not require visual reference points 
on the curve and can be obtained by computerized 
procedures (11,12,15). Such parameters, old and new, 
can be continuously evaluated and averaged over 
many cycles in real time, therefore being useful for 
monitoring purposes. 

End-Tidal CO2 Fraction
To avoid the cardiac motion artifact, the end-tidal 

CO2 fraction (FETCO2) can be measured on the VCO2(v) 
curve:

 			   [1]

As the linear slope between expired volume and 
the VCO2 of the segment defined by the end-expirato-
ry 10% of the total number of expiratory samples of 
each breath (Figure 1). 

Bohr Dead Space
The Bohr dead space (VD

Bohr) can be calculated ac-
cording to classical principles, assuming that FETCO2 
represents the alveolar fractional concentration of CO2 
in the following equation: 

VD
Bohr/VT = 1 − (VCO2tot/VT)/FETCO2	 [2]

where VT is the tidal volume and VCO2tot is the to-
tal CO2 eliminated in the breath.

Pre-Interface Expirate
The pre-interface expirate (PIE) can be calculated 

according to the method devised by Wolff and Brunner 
(16,17) as the mean of the normalized distribution func-
tion of phase II. The volume at which this mean value is 
obtained represents the minimal mean volume of the 
convective airways, or PIE (16). Physiologically speaking, 
the PIE represents the expired volume at which the in-
terface between the airways and alveolar gas becomes 
identifiable upon the opening of the airways.

Slope of Phase III
The portion of the FECO2(v) curve between PIE 

and VT is divided into four segments. In accordance 
with Åström et al. (17), the slope of phase III (slope III) is 
calculated as the slope of the linear regression line be-
tween FECO2 and volume for the two central segments. 

Series Dead Space
The FECO2(v) curve is corrected for the slope III be-

tween the PIE and end-tidal CO2 volume. From the cor-
rected new curve, the volume of the series dead space 
(VD

ser) is calculated by the Fowler equal area method. 
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This procedure prevents overcorrection of phase II (17). 
The airway dead space (VDaw) can be obtained by sub-
tracting the instrumental dead space from the VD

ser.

Index of Alveolar Heterogeneity
According to various authors (18,19), the differ-

ence between VD
ser and VD

Bohr is mainly attributable to 
unequal regional distribution, which distorts the curve 
beyond the PIE. An index of alveolar heterogeneity 
(IAH) can be calculated by relating the two magni-
tudes:

 IAH(%) =   1 − (VT - VD
Bohr)   . 100	 [3]

		      (VT - VD
ser)

Alveolar Ejection Volume
As previously demonstrated (12,15), alveolar ejec-

tion volume (VAE) can be determined from the VCO2(v) 
curve (Figure 1). It has been shown that, by pivoting 
on the end-expiratory point after linear fitting of the 
last end-expiratory segment, the slope of the VCO2(v) 
curve can be decreased by 5% in ventilated patients 
(11) and by 6% in spontaneously breathing patients 
(20). The new line crosses the VCO2(v) curve at a single 
point. The volume difference between this and the 
end-expiratory point corresponds to the VAE. The VAE 

tends to decrease as serial contamination of alveolar 
gas, heterogeneity, and phase II increase. According 
to the hypothesis of sequential gas exhalation, the VAE 

fraction (VAE/VT ratio) is described as the fraction of VT 

that is contaminated (because of alveolar heterogene-
ity and airway mixing), which is smaller than is that of 
the physiological dead space in terms of the end-tidal 
expired gas. In previous studies, performed in intu-
bated individuals (healthy subjects and patients), VAE/
VT was a satisfactory measure of the degree of lung 
impairment and correlated with other indices of the 
distribution of ventilation (13).

Index of Ventilatory Efficiency
Because VAE is directly dependent on VT and VD

ser, it 
seems appropriate to express it in relation to the mag-
nitudes of those parameters. An index of ventilatory 
efficiency (IVE) can be calculated as follows:

IVE(%) =       VAE         . 100	 [4]
	           (VT - VD

ser)
	
In healthy subjects and in patients, the IVE is less 

dependent on VT than are other capnographic indices 
(20).

VOLUMETRIC CAPNOGRAPHY IN ACUTE LUNG IN-
JURY AND ARDS

Acute lung injury (ALI) is characterized by dif-
fuse alveolar injury, alveolar collapse, or consolidation, 
together with severe vascular damage, protein-rich 
lung edema, surfactant inactivation, and inflamma-
tion. Patients with ALI or ARDS present with low ven-
tilation/perfusion (and high alveolar CO2 tension) in 
some regions of the lung, which typically coexist with 
other regions in which there is high ventilation/perfu-
sion (and low alveolar CO2 tension). The combination 
of these two conditions (caused by severe alveolar 
and vascular damage) results in increased pulmonary 
dead space and alveolar heterogeneity. In addition, 
the pulmonary dead space is increased in individuals 
suffering from shock, systemic or pulmonary hypoten-
sion, and obstruction of pulmonary vessels (massive 
pulmonary embolus or microthrombosis). Artificial 
ventilation adds to the complexity of understanding in 
variations of dead space at the bedside because it can 
substantially affect dead space. Positive end-expirato-
ry pressure (PEEP) levels that recruit collapsed lung can 
reduce the dead space, primarily by reducing intrapul-
monary shunt, whereas overdistension of the lung pro-
motes the development of high ventilation/perfusion 
regions and increases the dead space (21). Therefore, a 
number of pulmonary and extrapulmonary factors can 
affect the bedside interpretation of changes in the vol-
ume of the dead space.

Studies have shown that the hypoxemia seen in pa-
tients with ARDS is caused by intrapulmonary shunt and 
by low ventilation/perfusion ratios in some regions of the 
lung (22). In addition, the use of the multiple inert gas 
elimination technique has shown that, in patients with 
ARDS, a large portion of the ventilation is distributed to 
nonperfused or poorly perfused regions (22). In the oleic 
acid-injured lungs of dogs, Coffey et al. (21) found that 
high VD/VT correlated with shunt, inert gas dead space, 
and mid-range ventilation/perfusion heterogeneity. The 
available capnographic data indicate that, in ALI and 
ARDS patients, the distribution of ventilation is quite un-
even and the ventilatory process is inefficient. In a study 
conducted by Blanch et al. (12), indices obtained from 
volumetric capnography (VD

Bohr/VT, slope III, and VAE/VT) 

Figure 1 - Determination of VAE on the VCO2(v) curve. FETCO2 is obtai-
ned by linear fitting of the last end-expiratory segment (50 points) of 
the curve (ellipse).
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were markedly different in ALI and ARDS patients than 
in the controls. The VD

Bohr and slope III were significantly 
higher in ALI and ARDS patients than in the controls, as 
well as being significantly higher in the patients with 
ARDS than in those with ALI. The VAE/VT was significant-
ly lower in the ALI and ARDS patients than in the con-
trols and was significantly lower in the ARDS patients 
than in ALI patients. 

Effect of VT

In recumbent, anesthetized healthy subjects, an 
increase in VT increases ventilatory efficiency. Studies 
involving healthy subjects (23) have shown that rela-
tively small increases in VT result in greater convection-
dependent heterogeneous ventilation, whereas that 
due to the interaction of convection and diffusion in 
the lung periphery decreases. In a study conducted 
by Romero et al. (11), volume had a significant effect 
on VAE/VT in healthy subjects but not in ARDS patients. 
These results are in agreement with those of Paiva et 
al. (24), who also showed that an increase in VT reduces 
slope III in healthy subjects. In ARDS patients, an in-
crease in VT might be expected to recruit some alveo-
lar units and to increase, to some extent, the degree 
of alveolar homogeneity (25). In fact, only if recruited 
units were strictly normal and homogeneous would 
they contribute to improving ventilatory and mechani-
cal efficiency. We can reasonably suppose that the ab-
sence of a VT-related increase in VAE/VT and IVE in ARDS 
patients is attributable to the fact that that an increase 
in VT does not effectively recruit new lung areas or that 
most of the alveoli recruited are diseased. This raises 
the hypothesis that increased physiologic dead space 
and decreased VAE/VT are indicators of a poor prognosis 
in ARDS and that their evolution during treatment has 
an impact on outcomes (26-29).

Effect of PEEP
The alveolar dead space is significantly increased 

in ALI and is not affected by the use of PEEP. However, 
when PEEP is administered to recruit collapsed lung 
units (resulting in improved oxygenation), the alveolar 
dead space decreases unless overdistension impairs al-
veolar perfusion. Breen and Mazumdar (30) found that 
the application of 11 cmH2O of PEEP in anesthetized, 

mechanically ventilated, open-chested dogs increased 
the physiological dead space, reduced VCO2tot and 
resulted in a poorly defined alveolar plateau. These 
changes were mainly produced by a significant de-
crease in cardiac output related to the use of PEEP. 
Tusman et al. (31) tested the usefulness of the dead 
space parameter for determining open-lung PEEP in 
eight pigs submitted to lung lavage. We find it interest-
ing that the alveolar dead space correlated well with 
arterial oxygen tension, normally aerated areas, and 
non-aerated areas in all animals, with a sensitivity of 
89% and a specificity of 90% for detecting lung col-
lapse. However, in saline lavage-induced experimental 
animal models of ARDS, there is considerable potential 
for recruitment that increases in parallel with increases 
in PEEP (32), and comparisons with ARDS in humans 
should therefore be made with caution. 

The relationship between the effects of PEEP on 
volumetric capnography and respiratory mechan-
ics have been studied in patients with normal lungs, 
patients with moderate ALI, and patients with severe 
ARDS. Blanch et al. (12) found that patients with ARDS 
presented with markedly lower respiratory system 
compliance and greater total respiratory system resis-
tance than did controls. Although an increase in PEEP 
improved respiratory mechanics in healthy subjects 
and worsened lung tissue resistance in patients with 
respiratory failure, it did not affect volumetric capnog-
raphy indices. Smith and Fletcher (33) studied heart 
surgery patients and also found that PEEP did not 
modify CO2 elimination in the immediate postopera-
tive period. Beydon et al. (34) studied the effect of PEEP 
on the dead space in patients with ALI. The authors 
found a high VD/VT that was unaffected by raising PEEP 
from 0 to 15 cmH2O. Patients in whom oxygenation im-
proved with PEEP showed a concurrent decrease in VD/
VT and vice versa. In an experimental animal model of 
oleic acid-induced ARDS, Coffey et al. (21) found that 
low PEEP reduced physiological VD/VT and intrapulmo-
nary shunt. Conversely, in the same animals, high PEEP 
increased the fraction of ventilation delivered to areas 
with high ventilation/perfusion, resulting in increased 
physiological VD/VT. Variations in VD/VT after the initia-
tion of PEEP largely depend on the type, degree, and 
stage of lung injury.
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